
Challenges in Advanced Packaging for High Performance Computing
Dr. Cheng YANG
Industry Expert
Abstract:
With ever growing demands of cloud applications, advanced packaging with chiplet integration, becomes a major technology path to meet the increasing demands of computing power. Power delivery and thermal management are two crucial roadblocks in various scenarios, e.g. when large size xPU power can reach thousand watts, liquid cooling and high efficiency power modules at both board and package level become prerequisites for the system to work properly. Package and silicon power delivery solutions, e.g. silicon capacitors (including DTC, MIM etc.), integrated VR etc. add process complexities and cost but are necessary to make the advanced node IC work properly. Further integration in both board and package level can been foreseen, e.g. 12~48V package integrated VR to meet future demands. On the other side, the thermal management (basically all power delivered to computing ICs will be dissipated as heat) becomes very challenging, advanced package and system level cooling methods are needed. Thermal interface material is a major concern at many cases where advanced TIM becomes a very hot topics in the industry. Heat induced reliability (silicon, package) is also a critical job for the packaging industry. Key observations and a few cases will be discussed.
Speaker's Biography:
Dr. Yang has more than 25 years' experience in electronics system and IC packaging development. As the industrial expert, he has worked at Flex on SiP products and technology development in IoT, automotive, medical, and industrial applications, covering design, manufacturing, and testing areas. He has worked at Intel on memory packaging design and technology development for 13 years. Dr. Yang hold a Ph.D. degree from National University of Singapore, EMBA from Washington University in St. Louis, and Master and Bachelor from Shanghai Jiaotong University.